Distributed Energy Resource (DER) Integration

EPRI Solar Hosting Capacity & Austin SHINES

Lisa Martin
Program Manager
Smart Grid & System Operations
January 24, 2017
Austin Energy 2025 Goals

- 55% renewable energy
- 900 MW of savings from energy efficiency and demand response
- Solar includes 200 MW local; 100 MW customer-sited; 10 MW local storage
- All City of Austin facilities, operations and fleet carbon neutral

Subject to Affordability Goals
DER Integration

... one of four initiatives supporting AE’s strategic planning goal for Grid Modernization

<table>
<thead>
<tr>
<th>Initiative</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed Energy Resource Integration</td>
<td></td>
<td></td>
<td></td>
<td>Add’l Energy Storage System Deployment</td>
<td>Utility-Owned DER</td>
</tr>
<tr>
<td>Austin SHINES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPRI Solar Hosting Capacity Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand Response and Emergency Response programs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Islanding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blue-shaded initiatives represent existing work
Green-shaded initiatives represent new work

Sustainable and Holistic Integration of Energy Storage and Solar PV – SHINES
Electric Power Research Institute – EPRI
Solar Hosting Capacity
Amount of DER that can be accommodated on a given feeder without impacting reliability or power quality.

After observing all issues and locations on a feeder, how much DER that can be accommodated is different based on many factors including location.
Impacts Considered for Hosting Capacity

Impacts Considered

- **Voltage**
 - Primary overvoltage
 - Primary voltage change
 - LTC/Regulator tapping

- **Thermal**
 - Ratings for generating power
 - Ratings for demanding power

- **Protection**
 - Element fault current
 - Breaker relay reduction of reach
 - Sympathetic breaker relay tripping
 - Reverse power flow
 - Unintentional islanding
Hosting Capacity Example

Feeder View of Node-Level Hosting Capacity
Feeder 0.6 MW
Centralized Large DER, Min

- Issue: Primary Over-Voltage
 Hosting Capacity: 0.6
- Issue: Thermal for Discharging DER
 Hosting Capacity: 1.65
- Issue: Breaker Relay Reduction of Reach
 Hosting Capacity: 3.03
Hosting Capacity Example (con’t.)

Feeder View of Node-Level Hosting Capacity
Feeder 0.6 MW
Centralized Large DER, Min

Issue Feeder Selected
Primary Over-Voltage 0.6 1.4
Thermal for Discharging DER 1.55 10.0
Breaker Relay Reduction of Reach 3.03 3.03

'DH3936891' 1.4 MW limited by Primary Over-Voltage
Hosting Capacity Example (con’t.)
Solar Hosting Capacity Analysis

1. Validated the process
2. Analyzed 15 feeders
3. Analyze remaining feeders

A phased approach

Incorporate Hosting Capacity into ADMS
Austin SHINES
The projects will work to dramatically increase solar-generated electricity that can be dispatched at any time – day or night – to meet consumer electricity needs while ensuring the reliability of the nation’s electricity grid.
What is SHINES?

Sustainable and Holistic Integration of Energy Storage and Solar PV

A DOE funding opportunity
Austin Energy received largest, of six nationwide SHINES awards, from the U.S. Department of Energy $4.3 million

- Commonwealth Edison Company (Chicago, IL) $4 million
- Fraunhofer USA Center for Sustainable Energy Systems (Boston, MA) $3.5 million
- The Electric Power Research Institute (Knoxville, TN) $3.1 million
- The Hawaiian Electric Company (Honolulu, HI) $2.4 million
- Carnegie Mellon University (Pittsburgh, PA) $1 million
Austin SHINES Concept

Utility Scale Energy Storage + PV
Commercial Energy Storage + PV
Residential Energy Storage + PV
DER Management Platform

Illustrative
• Advance utility’s **local storage and solar goals**

• **Strategic approach** leverages existing and planned work to obtain external funding
 – Ultimately reducing the overall cost for the customer

• Discover best way to **maximize Distributed Energy Resource (DER) value** for AE and the customer

• Distributed Energy Resource (DER) management platform based on **open standards**

• Project designed to **engage customers** to develop new programs and consumer options

• Includes **affordability targets** and captures holistic benefits via System Levelized Cost of Energy metrics
Project Timeline and Funding

Feb - Jun
Contract/Design

Jul - Mar
Deploy

Apr - Apr
Demonstrate

2017

- **AE funding**
 $6.2 million

- **External funding**
 $5.36 million

2018

- **Dept of Energy**
 $4.3 million

2019

- **TCEQ**
 $1 million

- **Ideal Power**
 $60,000

Feb 1, 2016

Apr 30, 2019
Austin SHINES will provide information/learnings to assist AE with its future solar and battery storage roadmap.