AUSTIN ENERGY
PURCHASE SPECIFICATION
FOR
SWITCHGEAR, SPOT NETWORK, INDOOR, 3PH, 12.47KV, METAL CLAD

Department/Standards
Date Prepared by Issuance/Revision Manager/Manager

This specification, until revised or rescinded, shall apply to each future purchase and contract for the service described herein.

TABLE OF CONTENTS

Page1.0 Scope and Classification 3
2.0 Applicable Standards 4
3.0 Design 6
3.1 Functional Requirements 6
3.2 Switchgear Ratings 6
3.3 Bus Ratings 7
3.4 Power Source 7
4.0 Construction 7
4.1 General 7
4.2 Structural 7
4.3 Ventilation 9
4.4 Circuit Breakers 9
4.5 Bus 11
4.6 Boots 11
4.7 Ground Bus 12
4.8 Terminations 12
4.9 Instrument Transformers 12
4.10 Control Power Transformer and Automatic Transfer Switch 13
4.11 Wiring 14
4.12 Finish 16
4.13 Nameplates 16
4.14 Relays 17
4.15 Cubicle Equipment Description 18
5.0 Accessories 28
6.0 Inspection and Testing 28
6.1 General 28
6.2 Specific Tests 29
6.3 Field Tests 29
7.0 Drawings 29
8.0 Delivery 31

Attachment I - Nameplate Schedules
Attachment II - Drawing 49-7-3304-CTD1
Attachment III - Drawing 49-7-2592-R1
Attachment IV - Drawing 49-7-3338-L1

AUSTIN ENERGY
PURCHASE SPECIFICATION
FOR
SWITCHGEAR
INDOOR METALCLAD
12.47 KV SPOT NETWORK

1.0 SCOPE AND CLASSIFICATION

1.1 Scope

1.1.1 The City of Austin requires a qualified supplier to provide 12.47 kV metalclad switchgear for use as a spot network. The Supplier shall follow this specification and the associated drawings precisely and shall seek clarification whenever necessary.
1.1.2 The switchgear furnished under these specifications shall be assembled in the continental United States by a domestic Supplier of switchgear with 10 years of experience in the utility market. The circuit breakers and the circuit breaker cubicles shall be furnished by the same manufacturer or a certified O.E.M.

1.2 Classification

1.2.1 The switchgear will be used as a 12.47 kV spot network on a network distribution system.
1.2.2 All exceptions to this specification and the reasons for each exception shall be listed in writing and submitted with the bid. Non-conformance to the specification may result in bid rejection. All exceptions must be resolved in writing prior to the awarding of a contract to the successful bidder. After the contract is awarded no exceptions will be allowed.

Specification E-1321
August 17, 1993
Page 4 of 32

2.0
 APPLICABLE STANDARDS

The switchgear furnished under this specification shall conform to the latest NEMA, IEEE, ANSI/IEEE, ANSI, and ASTM standards applicable to metalclad power switchgear, power circuit breakers, instrument transformers, and other equipment covered in this specification. In the case of a conflict between any of the standards mentioned in this specification and the contents of this document, the City of Austin specification shall govern. The applicable standards shall include but not be limited to, the following:
2.1 ANSI/IEEE C37.04-1979 (Reaff 1988) Standard Rating Structure for AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis (Includes Supplement C37.04c-1985)
2.2 ANSI/IEEE C37.04f-1990 Supplement to ANSI/IEEE C37.04-1979
2.3 ANSI/IEEE C.37.06-1987 Standard for AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis-Preferred Ratings and Related Capabilities
2.4 ANSI/IEEE C37.09-1979 (Reaff 1988) Standard Test Procedure for AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis
2.5 ANSI/IEEE C37.09e-1985 Supplement to ANSI/IEEE C37.09-1979
2.6 ANSI/IEEE C37.09g-1985 Draft Supplement to ANSI/IEEE C37.09-1979
2.7 ANSI/IEEE C37.1-1987 Standard Definition, Specification, and Analysis of Systems Used for Supervisory Control, Data Acquisition, and Automatic Control
2.8 ANSI/IEEE C37.2-1991 Draft Standard Electrical Power System Device Function Numbers
2.9 ANSI/IEEE C37.20.2-1987 Standard for Metal-Clad and Station Type Cubicle Switchgear
2.10 ANSI/IEEE C37.21-1985 Standard for Control Switchboards
2.11 ANSI/IEEE C37.23-1987 Standard for Metal-Enclosed Bus and Calculating Losses in Isolated-Phase Bus
2.12 ANSI/IEEE C37.54-1987 Standard Conformance Test Procedures For Indoor Alternating-Current High-Voltage Circuit Breakers Applied as Removable Elements in Metal-Enclosed Switchgear Assemblies

Specification E-1321
August 17, 1993
Page 5 of 32

Specification E-1321
August 17, 1993
Page 6 of 32

3.0 DESIGN

3.1 Functional Requirements

The switchgear will be used to provide four 12.47 kV wye, 4 wire, solidly grounded neutral, 3 phase electric utility distribution circuits from the 12.47 kV secondary of four (4) transformers. The functions that the switchgear will perform shall include, but not be limited to, the following:
a) Independent on and off switching of each distribution
circuit.
b) Fault protection for each distriution circuit.
c) Metering for each customer circuit.

3.2 Ratings

Circuit Breaker and Switchgear Ratings:

Service Conditions:
Temperature: -30 C to +60 C
Humidity:
0\% to 100\%
Altitude:
Sea Level to 3300 feet above sea level

3.3 Bus Ratings

All bus shall be of a non-segregated design. A
constructed, and tested in accordance with
applicable standards. All bus and bus duc
Maximum operating voltage, rms:
60 Hz withstand, peak:
Impulse withstand, peak:
Continuous current at $60 \mathrm{~Hz}, \mathrm{kV}$
Momentary current, Asym. rms:

3.4 Power Source

This switchgear will be connected to four (4) transformers, each rated as follows:

Capacity
Primary Voltage
Secondary Voltage
Primary BIL
Secondary BIL

2500 kVA
34.5 kV delta
12.47/7.2 kV wye grnd. neut.

150 kV
95 kV

4.0 CONSTRUCTION

4.1 General
4.1.1 The switchgear shall be designed with a total of nine cubicles arranged in a single row. Four line side breaker cubicles, one tie breaker cubicle, and four feeder breaker cubicles shall be included. The breakers shall drawout horizontally.
4.1.2 Equivalent substitutions shall be approved by the Electric Utility.

4.2 Structural

4.2.1 The switchgear shall be constructed so that each cubicle is an individual shipping unit to facilitate installation. (Total of nine cubicles.)

Specification E-1321
August 17, 1993
Page 8 of 32
4.2.2 Each cubicle shall be built as an integral item complete with a frame heavy and rigid enough to maintain it true and square during shipping and installation.
4.2 .3

The top of each cubicle shall be equipped with lifting eyes or a lifting bar to facilitate handling with a small overhead crane. Lifting points on the sides or bottoms of the cubicles are not acceptable.
4.2.4 The City of Austin will attach the switchgear assembly directly on a concrete slab floor utilizing lead expansion anchors and bolts.

Smooth steel plates shall be utilized for the switchgear floor, adequately supported to withstand moving the circuit breakers. All floor joints shall be smooth and even with the plates butted solidly together.
4.2.6 All cubicles shall be constructed with overall dimensions not to exceed 95 inches in height, 98 inches in depth and 36 inches in width.
4.2.7 Each cubicle shall be equipped with two hinged panels in front and a two-piece rear panel. The rear panels shall be approximately half the height of the cubicle and independently removable. External handles shall be provided on the rear panels for ease in removal and handling.
4.2 .8

The circuit breaker shall be located in the lower half of the cubicle. The circuit breaker compartment shall be equipped to house the removable breaker element. The mechanism for levering the breaker shall be cell mounted and include all the necessary interlocks to render the breaker mechanism mechanically trip free during the levering procedure. A contact shall ground the breaker between and at the operating and test positions. Provide rails to allow withdrawal of each circuit breaker for inspection and maintenance without the use of a separate lifting device.
4.2.9 Cable entrance shall be from either the top or the bottom. Removable gland plates shall be provided, on top for the installation of conduit.
4.2.10 Relays and instruments shall be mounted on rigid formed hinged panels with hinges of sufficient strength to fully support the panel when open without sag. Hinged panels shall have 90 degrees turn handle latches. (No Alternate)

Specification E-1321
August 17, 1993
Page 9 of 32
4.2.11 All doors shall open a minimum of 105 degrees and be equipped with door stops.
4.2.12 Auxiliary tripping relays shall not be mounted on hinged panels. Relays should not operate as a result of circuit breaker motion or vibration.
4.2 .13

Moving shutters shall cover the primary stationary contacts when the circuit breakers or potential transformer trays are moved from the operating to the disconnected position.
4.2.14 All metalwork shall be constructed of No.11 standard gauge steel or greater.
4.2.15 Except for CPT, all 12.47 kV voltages in the switchgear shall be seperated from all lower voltages by a steel barrier.

4.3 Ventilation

4.3.1 Protected, filtered, rodent-proof ventilation openings shall be provided as required. The ventilation should be designed so that forced cooling is not required to maintain equipment rating.
4.3.2 Equipment heaters shall be provided in each cubicle, with one central thermostat control, to prevent condensation.

4.4 Circuit Breakers

4.4.1 The circuit breakers shall be Westinghouse VCP-W vacuum horizontal drawout type, capable of being withdrawn on rails. The breakers shall be operated by a motor-charged stored energy spring mechanism, charged normally by a universal electric motor and in an emergency by a manual handle. No other type of operating mechanism is acceptable. The primary disconnecting contacts shall be silver-plated copper.
4.4.2 Each circuit breaker shall contain three vacuum interrupters separately mounted in a self-contained, self-aligning pole unit which can be removed easily. The vacuum interrupter pole unit shall be mounted on glass polyester supports.

Specification E-1321
August 17, 1993
Page 10 of 32
4.4.3 A contact wear gap indicator for each vacuum interrupter, which requires no tools to indicate available contact life, shall be easily visible when the breaker is removed from its compartment.
4.4.4 The current transfer from the vacuum interrupter moving stem to the breaker main conductor shall be a non-sliding design.
4.4.5 The breaker front panel shall be removable when the breaker is withdrawn for ease of inspection and maintenance.

The secondary contacts shall be silver-plated and shall automatically engage in the breaker operating position, which can be manually engaged in the breaker test position.
4.4.7 Interlocks shall be provided to prevent closing of a breaker between operating and test positions, to trip breakers upon insertion or removal from housing and to discharge stored energy mechanisms upon insertion or removal from the housing. The breaker shall be secured positively in the housing between and including the operating and test positions.
4.4.8 The circuit breakers shall be self-aligning and shall be rigidly held in the operating position without locking bars or bolts.
4.4.9 Circuit breakers shall be provided with a test position wherein the primary contacts are disengaged and the secondary contacts are engaged to allow testing of the mechanism and circuitry. A two-pole switch shall be provided with one contact closed to indicate the breaker is in the test position and the other contact shall close when the circuit breaker is fully engaged.
4.4.10 Vacuum circuit breakers shall be provided with a minimum of four (4) spare "a" and four (4) spare "b" auxiliary contacts, wired to terminal blocks for future use.
4.4.11 Name plates shall be provided for all switches and major components in circuit breaker control enclosure.
4.4.12 Control and auxiliary switches shall have wiping type contacts. Roller type contacts are not acceptable.

Specification E-1321
August 17, 1993
Page 11 of 32

Abstract

4.4.13 All capacitor trip devices shall be per drawing 49-7-3304-CTD-1 (attachment II) and shall include a pushbutton and test light located on the front of the cubicle doors. Suppliers shall verify that capacitor sizing is adequate for use with manufacturer's trip coils to provide a minimum of two trip operations after loss of power. 4.4.14 The circuit breaker shall have a counter to register the number of breaker opens.

4.5 Bus
4.5.1 The main bus shall be copper and all taps shall be insulated with non-tracking flame retardant insulation. The main bus shall be continuously rated for 1200 amperes in accordance with ANSI standards for temperature rise. All bus shall be supported with porcelain insulating material. Aluminum bus bars are not acceptable.
4.5.2 All bus joints shall be silver-plated, insulated, and bolted with at least two stainless steel bolts with stainless steel flat washers on both head and nut and lockwashers. Bolts shall be torqued to meet bus design strength for maximum short circuit forces. Provisions shall be made at the ends of the line-up for future extension of the buswork.
4.5.3 The main bus shall be braced to withstand the forces which result from the maximum short circuit current and/or the circuit breaker close and latch capability.

Boots
4.6.1 Molded boots shall be furnished for all buswork connections and all connections including, but not limited to PT's, CT's, terminations, entrance bushings, and the station service transformer.
4.6.2 Boots shall be of a split design, easily installed and removed from the
buswork using snap fasteners, nylon nuts and bolts, etc. Taped joints and/or
taped boots are not acceptable.

Specification E-1321
August 17, 1993
Page 12 of 32

4.7

Ground Bus

4.7.1 A $1 / 4$ inch by 2 inch copper ground bus shall extend the full length of the line up and shall be bolted to the metal of each housing. All joints shall be made with at least two (2) bolts.
4.7.2 Connectors shall be provided at each end, inside cubicles 1 and 9, for termination of $4 / 0$ station ground stranded copper wire.
4.7.3 All circuit breaker and other equipment grounding devices shall be connected to the ground bus. A connector shall be provided in each cable termination cubicle for connecting cable shields and 250 MCM bare stranded neutral copper wire.
4.7.4 Sections of copper bar may be connected to form the ground bus. The term continuous means the bus shall be all copper and not have some other material, such as a steel cubicle wall, connected between two sections of the copper bus.

4.8

Terminations

4.8.1 Line side power cable and control wiring shall enter from the top of the switchgear. Load side power cable and meter wiring will exit switchgear from the bottom.
4.8.2 Four-hole NEMA pad bolted terminals shall be furnished for all power cable terminations.
4.8.3 Sufficient clearance shall be provided to install stress relief cones on all power cable. Cable supports shall be provided in rear of all incoming cable compartments.
4.8.4 Phases shall be labeled in each termination compartment.

4.9 Instrument Transformers

4.9.1 The standard location for the current transformers on the bus side and line side of the breaker units shall be front accessible to permit adding or changing current transformers without removing high voltage insulation connections. Shorting terminal blocks shall be furnished on the secondary of all the current transformers.

Specification E-1321
August 17, 1993
Page 13 of 32
4.9.2 Current transformers shall be provided as indicated on the one-line diagram. These shall be mechanically rated to the momentary rating of the circuit breakers and shall be fully insulated for the rating of the switchgear.
4.9.3 Three (3) metering accuracy C.T.'s shall be provided in each of the four (4) load breaker cubicles (C1, C2, C3, and C4). These shall be provided for high burden with accuracy class 0.3 through B.2, rating factor 1.5 with a 200:5 ampere ratio, Westinghouse SCV-D Type Cat\# 6353 C 89 H 05 or approved equivalent. All other C.T.'s shall be Westinghouse SCV-D or approved equal with the following minimum relay accuracies:

$\frac{\text { Ratio }}{200: 5}$	Relay Accuracy
$300: 5$	C50
$400: 5$	C100
$600: 5$	C100
$800: 5$	C200
$1200: 5$	C200
	C400

4.9.4 Potential transformers shall be drawout type with primary and secondary fuses and shall be of the ratios indicated on the one-line diagram.
4.9.5 Three (3) metering potential transformers, 7200 to 120 Volt, accuracy class $0.3 \mathrm{~W}, \mathrm{X}, \mathrm{M}, \mathrm{Y}$, connected $\mathrm{Y}-\mathrm{Y}$ to the incoming service bus, fused with current limiting fuses and mounted on
a drawout assembly shall be provided in cubicles 1 and 9.
4.9.6 Provide one spare set of fuses for each set of potential transformers.

4.10 Control Power Transformers and Automatic Transfer Switch

4.10.1 A control power transformer and automatic transfer switch shall be supplied to furnish all necessary control and auxiliary power for the entire switchgear assembly if the preferred power source supplied by the City of Austin is lost. The automatic transfer switch shall provide for automatic or manual transfer capability.
4.10.2 Transformer shall be nonflammable dry type in a drawout enclosure with high voltage current limiting fuses. Supplier to provide one spare fuse.
4.10.3 The drawout enclosure shall be interlocked with a secondary breaker so that it cannot be opened unless the secondary breaker is in the open position.
4.10.4 Push-to-test indicating lamps shall be furnished on the cubicle panel front to indicate presence of voltage on each control power source and transfer switch position. In addition, one (1) control relay with DPDT contacts shall be furnished and connected to each source to provide remote alarm or indication.

4.11 Wiring

4.11.1 All panel power, control or instrument transformer secondary wiring shall be GE Vulkene insulated switchboard wire 600 volt, 90C S1-57275, type SIS VW-1, single conductor, grey color, minimum size \#14 AWG 41 strand tinned copper, terminated with ring tongue insulated lugs. Fork tongue terminals are not acceptable. Insulation of the wire must abut the ring tongue terminal.
4.11.2 Wiring crossing hinges to hinged panels shall have fine stranding to prevent conductor breaking and shall be protected with sleeving to prevent abrasion.
4.11.3 Terminal blocks shall be rated for 600 V and 30 A per terminal. They shall accomodate wire sizes up to \#10 guage. All terminal blocks for external connections shall be completely free of factory wiring on City of Austin side of terminal block. Wiring to these terminal blocks shall be grouped according to function so as to allow a neat and orderly cable installation. Terminal blocks shall include 25 percent spare terminals. Terminal blocks shall not be mounted on floor, subfloor, or ceiling plates.
4.11.4 All C.T. leads shall be terminated on C.T. shorting and grounding type terminal blocks with ring type insulated terminals. All leads from each C.T. shall be brought to the terminal blocks. Terminal blocks shall be accessible from
the front of the switchgear assembly and not located in the high voltage compartments. All C.T. wye and delta connections shall be made at the terminal blocks.
4.11.5 All wiring of transducer outputs shall be with \#16 AWG shielded cable. Shields shall be grounded at the signal source only.

Specification E-1321
August 17, 1993
Page 15 of 32
4.11.6 All secondary control wiring passing through primary compartments shall be enclosed in grounded metal troughs or conduit. A separate rigid or flexible conduit shall be provided from cubicle 2 to cubicle 9 for metering C.T. and P.T. wiring.
4.11.7 Control power disconnects shall be provided for each circuit breaker.
4.11.8 Wiring between cubicles shall run from terminal board to terminal board in each cubicle. No splices shall be made in any wire.
4.11.9 All wiring shall be identified with captive permanent, clearly-marked wire tags. Tags shall be of heat shrink type material. Supplier shall furnish samples with approval drawings.
4.11.10 Marathon heavy duty keyless fuse blocks or equivalent shall be used. Pullout type fuse blocks are not acceptable.
4.11.11 Interconnect wiring shall be tagged, terminated, tested, then disconnected from both ends for shipment.
4.11.12 Supplier shall clearly identify all leads and terminal blocks intended for interconnections.
4.11.13 Provisions shall be made for the connection of future supervisory control. This shall include teminal block points for supervisory close, trip, network relay close blocking, circuit breaker and lockout relay status. These points shall all be grouped on the same or adjacent terminal blocks.
4.11.14 Alarm contacts shall be wired so that contact closing indicates an alarm condition.
4.11.15 One contact from each of the following shall be wired to to a terminal block in cubicle 5 for connection to an external annunciator.

1. Transformer lockout relays
2. Bus differential lockout relays
3. Transformer low side vacuum circuit breaker trip

Specification E-1321
August 17, 1993
Page 16 of 32
4. Feeder circuit breaker trip
5. Loss of normal control power
6. Loss of backup control power

4.12 Finish

4.12.1 The switchgear shall be painted ANSI No. 70 light gray in accordance with ANSI Z55.1, inside and outside.
4.12.2 All metal surfaces shall be cleaned and shotblasted before applying the primer. Cleaning and painting shall be done in a manner which will prevent dust or other airborne particles from contaminating freshly painted surfaces.
4.12.3 Surfaces shall be free of cracks, pits, projections, or other imperfections which would prevent the formation of a smooth, unbroken paint film.
4.12.4 All paint in any one paint coat shall be hard and dry through the entire paint film before the next coat is applied. In no case shall the elapsed time between the application of successive coats of paint to any surface be less than that recommended by the paint manufacturer.
4.12.5 Two (2) coats of primer shall be applied to all exposed metal surfaces using application methods recommended by the paint manufacturer and shall be a minimum of two (2) mils in thickness.
4.12.6 The top finish thickness shall be at least three (3) mils in thickness at all points.
4.12.7 All primer and paint shall be lead-free.

4.13 Nameplates

4.13.1 The supplier shall furnish and install all name plates as shown on attachment IV.

Specification E-1321
August 17, 1993
Page 17 of 32
4.13.2 The name plate material shall be laminated, phenol resin, 1/16" thick, semi-matte, black surfaces with white finish. The engraving shall cut through the black surface to the white lamination. Name plates shall be fastened to the metal with permanent adhesive. Door mounted name plates shall have a duplicate on the inside of the door.
4.13.3 The name plate lettering shall be Gothic, block type of standard sizes as shown on the name plate schedules.
4.13.4 Each circuit breaker shall have affixed a waterproof tag stating purchase order number, circuit breaker type, ratings, manufacturer, and shop order number.
4.13.5 Relay devices to which a device number is assigned shall have device number and relay type painted or otherwise indelibly and neatly marked on the rear of the case. (i.e. "51-A, Over-Current Relay", etc.)
4.13.6 Supplier shall label with paint or otherwise identify each terminal block, all points used on each terminal block and all fuse blocks.
4.14 Relays
4.14.1 DeviceFunction Type

87T	Transformer Diff.	ABB CA
87B	Bus Diff.	ABB CA-16
51	Overcurrent	ABB CO-9, C0-11
92	Network Relay	
	Amp XDCR	Westinghouse MPCR
	Volt XDCR	Transdata 30CS501
	W/Var XDCR	Transdata 30PS501
		Transdata 30 EWRS501

4.14.2 All relays shall be provided with covers.
4.14.3 Miscellaneous devices essential to the successful operation of the switchgear shall be mounted on the inside of the cubicle, on swinging panels, if necessary, to provide accessibility for maintenance and repair.
4.14.4 Relays mounted inside the cubicle shall be front connected.
4.14.5 Auxiliary tripping relays shall be mounted solidly to stationary sheets or panels to avoid accidental trips. Such devices shall not be mounted on hinged panels.

Specification E-1321
August 17, 1993
Page 18 of 32
4.14.6 Relays, fuses, or terminal blocks shall not be mounted on cubicle ceilings.
4.14.7 All devices mounted inside the cubicle shall be above the drawout level of the breaker.
4.14.8 All small miscellaneous items not specified elsewhere shall be supplied, including fuse blocks, fuses, wiring duct, terminal blocks, name plates, resistors, capacitors, minilites and covers, etc., as shown on the drawings or required for a complete installation.

4.15 Cubicle Equipment Description

The following section provides a detailed description of the equipment in each cubicle. Where the supplier is allowed the option of furnishing either the ABB, General Electric, or other manufacturers devices, the supplier shall remain consistant through all cubicles in the selection of devices.

Specification E-1321
August 17, 1993
Page 19 of 32

4.15.1 Cubicle 1 - Feeder Cubicle 1

Item Qty Description

13 Overcurrent Relays, Extremely Inverse 1-12A TOC, ABB C0-11 \#265C047A05

Overcurrent Relay, Extremely Inverse, 0.5 - 2.5A TOC, ABB C0-11 \#265C047A01

1 Ammeter, Electroindustries 3DAA5-H
1 3-Phase Amp Transducer, 0 - 5 Amp, 0 - 1 mA DC, Transdata \#30CS501

1 Watt/Var Transducer, 3 EL., 120 Volt, 5 Amp, 0 - 1 mA DC, 1800 Cal. Watts/Vars, Transdata \#30EWRS501

1 Agastat Timing Relay, \#7012PA
1 Meter Test Switch, 10 Pole, ABB Type FT-1, \#129A514G01
1 Breaker Control Switch, Electroswitch 2458D
1 Capacitor Trip Device per drawing 49-7-3304-CTD-1
2 Volt ${ }^{\text {Breaker Position }}$ Indicating Lights, GE Type ET-16, 120
Diode, IN4007 with MOV V250LA20B (as Required)
Trip Blocking Diode, ECG 5932 with MOV V250LA20B (as Required)

Specification E-1321
August 17, 1993
Page 20 of 32
4.15.2 Cubicle 2 - Feeder Cubicle 2

Item Qty Description
13 Overcurrent Relays, Extremely Inverse 1 - 12A TOC, ABB C0-11 \#265C047A05

1
Overcurrent Relay, Extremely Inverse, 0.5 - 2.5A TOC, ABB C0-11 \#265C047A01

Ammeter, Electroindustries 3DAA5-H
3-Phase Amp Transducer, 0 - 5 Amp, 0 - 1 mA DC, Transdata \#30CS501

Watt/Var Transducer, 3 EL., 120 Volt, 5 Amp, $0-1$ mA DC, 1800 Cal. Watts/Vars, Transdata \#30EWRS501

1 Agastat Timing Relay, \#7012PA
1 Meter Test Switch, 10 Pole, ABB Type FT-1, \#129A514G01
1 Breaker Control Switch, Electroswitch 2458D
1 Capacitor Trip Device per drawing 49-7-3304-CTD-1
2 Breaker Position Indicating Lights, GE Type ET-16, 120 Volt

Diode, IN4007 with MOV V250LA20B (as Required)
Trip Blocking Diode, ECG 5932 with MOV V250LA20B (as required)
4 Push-to-test indicating lights for control power source and transfer switch position indication

2 Control relays, DPDT, 120 VAC for control power source monitoring

Automatic transfer switch (to be sized for total load of switchgear assembly)
$2 \begin{gathered}\text { One pole circuit breakers for isolation of control power } \\ \text { sources }\end{gathered}$

Specification E-1321
August 17, 1993
Page 21 of 32
4.15.3 Cubicle 3 - Transformer 1

Item Qty Description
13 Transformer Differential Relay, ABB Type CA \#290B893A09

1 Lockout Relay, 125 VDC Electroswitch 7804D
2 Coil and Sudden Pressure Monitor Lamps, GE Type ET-16, 120 Volt

3 Overcurrent Relay, Very Inverse 1 - 12A TOC, No IOC, ABB Type C0-9 \#264C901A05

Overcurrent Relay, Very Inverse 0.5-2.5A TOC, No IOC, ABB Type C0-9 \#264C901A01

1 Ammeter, Electroindustries 3DAA5-H
1 3-Phase Amp Transducer, 0 - 5 Amp, 0 - 1 mADC, Transdata \#30CS501

1 Meter Test Switch, 10 Pole, ABB Type FT-1, 129A514G01
2 Agastat Timing Relay, CAT. 7012 PA
1 Breaker Control Switch, Electroswitch 2458D
4 Breaker Position Indication Lights, GE Type ET-16, 125 Volt

1 Network Relay, Westinghouse Type MPCR
Diode IN4007 with MOV V250LA20B (as required)
Trip Diode, ECG 5932 with MOV V250LA0B (as required)
1 Trip Test Switches, ABB Type FT-1, 129A501G01
2 Capacitor Trip Device per Drawing 49-7-3304-CTD-1

Specification E-1321
August 17, 1993
Page 22 of 32
4.15.4 Cubicle 4 - Transformer 2

Item Qty Description
13 Transformer Differential Relay, ABB Type CA \#290B893A09

1 Lockout Relay, 125 VDC Electroswitch 7804D
2 Coil and Sudden Pressure Monitor Lamps, GE Type ET-16, 120 Volt

3 Overcurrent Relay, Very Inverse 1 - 12A TOC, No IOC, ABB Type C0-9 \#264C901A05

Overcurrent Relay, Very Inverse 0.5-2.5A TOC, No IOC, ABB Type CO-9 \#264C901A01

1 Ammeter, Electroindustries 3DAA5-H
1 3-Phase Amp Transducer, 0 - 5 Amp, 0 - 1 mADC, Transdata \#30CS501

1 Meter Test Switch, 10 Pole, ABB Type FT-1, 129A514G01
2 Agastat Timing Relay, CAT. 7012 PA
1 Breaker Control Switch, Electroswitch 2458D
4 Breaker Position Indication Lights, GE Type ET-16, 125 Volt

1 Network Relay, Westinghouse Type MPCR
Diode IN4007 with MOV V250LA20B (as required)
Trip Diode, ECG 5932 with MOV V250LA0B (as required)
2 Trip Test Switches, ABB Type FT-1, 129A501G01
3 Capacitor Trip Device per Drawing 49-7-3304-CTD-1
3 Bus Differential Relays, ABB Type CA-16 \#671B157A20
1 Lockout Relay, 125 VDC, Electroswitch 7805D

Specification E-1321
August 17, 1993
Page 23 of 32
4.15.5 Cubicle 5 - Bus Tie Breaker

Specification E-1321
August 17, 1993
Page 24 of 32
4.15.6 Cubicle 6 - Transformer 3

Item Qty Description
13 Transformer Differential Relay, ABB Type CA \#290B893A09

1 Lockout Relay, 125 VDC Electroswitch 7804D
2 Coil and Sudden Pressure Monitor Lamps, GE Type ET-16, 120 Volt

3 Overcurrent Relay, Very Inverse 1 - 12A TOC, No IOC, ABB Type C0-9 \#264C901A05

Overcurrent Relay, Very Inverse 0.5-2.5A TOC, No IOC, ABB Type CO-9 \#264C901A01

1 Ammeter, Electroindustries 3DAA5-H
1 3-Phase Amp Transducer, 0 - 5 Amp, 0 - 1 mADC, Transdata \#30CS501

1 Meter Test Switch, 10 Pole, ABB Type FT-1, 129A514G01
2 Agastat Timing Relay, CAT. 7012 PA
1 Breaker Control Switch, Electroswitch 2458D
4 Breaker Position Indication Lights, GE Type ET-16, 125 Volt

1 Network Relay, Westinghouse Type MPCR
Diode IN4007 with MOV V250LA20B (as required)
Trip Diode, ECG 5932 with MOV V250LA0B (as required)
2 Trip Test Switches, ABB Type FT-1, 129A501G01
3 Capacitor Trip Device per Drawing 49-7-3304-CTD-1
3 Bus Differential Relays, ABB Type CA-16 \#671B157A20
1 Lockout Relay, 125 VDC, Electroswitch 7805D

Specification E-1321
August 17, 1993
Page 25 of 32
4.15.7 Cubicle 7 - Transformer 4

Specification E-1321
August 17, 1993
Page 26 of 32

```
4.15.8 Cubicle 8 - Feeder Cubicle 3
    Item Qty Description
    1 O Overcurrent Relays, Extremely Inverse 1 - 12A TOC, ABB
    C0-11 #265C047A05
    1 Overcurrent Relay, Extremely Inverse, 0.5 - 2.5A TOC, ABB
    C0-11 #265C047A01
    1 Ammeter, Electroindustries 3DAA5-H
    1 3-Phase Amp Transducer, 0 - 5 Amp, 0 - 1 mA DC,
    Transdata #30CS501
    1 Watt/Var Transducer, 3 EL., }120\mathrm{ Volt, 5 Amp, 0 - 1 mA DC,
    1800 Cal. Watts/Vars, Transdata #30EWRS501
            Agastat Timing Relay, #7012PA
            Meter Test Switch, 10 Pole, ABB Type FT-1, #129A514G01
                    1 Breaker Control Switch, Electroswitch 2458D
                    1 Capacitor Trip Device per drawing 49-7-3304-CTD-1
                    2 Breaker Position Indicating Lights, GE Type ET-16, 120
        Volt
            Diode, IN4007 with MOV V250LA20B (as required)
            Trip Blocking Diode, ECG }5932\mathrm{ with MOV V250LA20B (as
        required)
```

Specification E-1321
August 17, 1993
Page 27 of 32

4.15.9 Cubicle 9 - Feeder Cubicle 4

ACCESSORIES

The switchgear manufacturer shall furnish accessories for test, inspection, maintenance, and operation, including:

1 - A ground and test device for use in any circuit breaker cubicle to permit testing or grounding of the bus and line circuits. The device is to be mounted on a frame that can be easily rolled in and out of the circuit breaker cubicles.

1 - Maintenance tool for manually charging the breaker closing spring and manually opening the shutter

1 - Levering crank for moving the breaker between test and connected positions
1 - Test jumper for electrically operating the breaker while out of its compartment

1 - Breaker lifting yoke used for attachment to breaker for lifting breaker on or off compartment rails

1 - Set of rail extensions and rail clamps
1 - "Dockable" transport dolly for moving breaker about outside its compartment
1 - Test cabinet for testing electrically operated breakers outside housing
1 - Portable lifting device for lifting the breaker on or off the rails
1 - Ramp for rolling breaker mounted in lower compartment directly onto the floor
1 - Electrical levering device

6.0 INSPECTION AND TESTING

6.1 Inspection

The City of Austin reserves the right to visit the manufacturing facility and observe the switchgear and circuit breakers undergoing construction and testing. Advance notice of at least two (2) weeks shall be given to The City of Austin before the start of testing.

6.2 Factory Testing

Page 29 of 32

The fully assembled switchgear line-up shall be tested in accordance with ANSI/IEEE C37.54-1987 and ANSI/IEEE C37.09-1979 for the circuit breakers and ANSI/IEEE C37.55-1989 and ANSI/IEEE C37.20.2-1987 for the switchgear before shipment. Five copies of certified test reports shall be furnished before shipment.

6.3 Field Testing

The Supplier shall provide personnel and equipment to field inspect and test each circuit breaker for proper operation. The supplier's service personnel shall inspect units per the manufacturer's recommendations, including the following as a minimum:
(1) Check interrupters, operating mechanism and current transformers for loose hardware, correct alignment, and proper operation.
(2) Test vacuum bottles or dielectric strength
(3) Check all bus joints and supports for tightness

The successful bidder shall mail a copy of all test reports within ten (10) days after completion of tests.

7.0 DRAWINGS

7.1 The following drawings will be furnished to the Supplier as part of these specifications:
(1) Capacitor trip device (drawing 49-7-3304-CTD1)
(2) Relay one-line diagram (drawing 49-7-2592-R1)
(3) Switchgear layout with nameplate schedule (drawing 49-7-3338-L1)
(4) Nameplate schedules
(5) Typical control schematics (to be given to successful bidder)
7.2 The Supplier shall furnish to City of Austin Engineer five sets of approval drawings within ten (10) weeks after the receipt of the order and prior to beginning construction of the switchgear. The drawings shall include but not be limited to the following:
(1) Switchgear three-line AC and DC schematics including alarm contacts
(2) Switchgear internal wiring diagram
(3) One-line drawing showing size and location of control and power conduit entrance plates
(4) Excitation and ratio correction factor curves for all current transformers
(5) Interrupting duty for each feeder circuit breaker
(6) Switchgear material schedule
(7) Nameplate information

All drawings shall be $24 " \times 36 "$. A minimum of two (2) weeks are required by the City of Austin for review of approval drawings.

The Supplier shall furnish five (5) sets of "as built" electrical control drawings in addition to one set on AutoCad version 12 (or later) on $51 / 4^{\prime \prime}$ or $31 / 2^{\prime \prime}$ disk prior to shipment of the switchgear.

The Supplier shall furnish complete installation, operating, and maintenance instruction books for each of the switchgear components and each relay and control device bound in $81 / 2 " x$ 11" light weight folders suitable for reference and filing (five copies) with the paticular model supplied, clearly noted on documents that apply to more than one type or model. A spare parts list with prices and catalog numbers shall also be provided.

In addition to the above supplied instruction books, one (1) set of instruction books, complete with "as built" drawings, shall be packed with the metal-clad switchgear when shipped. The Supplier shall ship these documents in weatherproof packaging.

All drawings and coorespondence shall be directed to: City of Austin Electric Utility, George Martinez, Supervisor of Distribution Engineering, 4411-B Meinardus Drive, Austin, Texas 78744.

8.0 DELIVERY

8.1 The apparatus shall be shipped in assembly units, insofar as consistent with good shipping practices. When items must be disassembled for shipment, they shall be matchmarked. All units and their containers shall be piece marked and show the purchase order number.
8.2 Machined and other unpainted surfaces shall be fully protected from impact and weather damage with all holes and openings plugged or covered. All costs of packing, loading, blocking, and unloading are to be borne by the Supplier. Delivery shall be made to the job site.
8.3 Each cubicle shall be shipped as an individual unit. Circuit breakers will be shipped separately. Supplier shall provide detailed instructions for field assembly.
8.4 Final acceptance of the work supplied under this specification shall be rendered when the following conditions have been met:
(1) Delivery requirements as specified have been met.
(2) Instruction book requirements as specified have been met.
(3) Sufficient tests and inspections have been made by the purchaser to determine that the work meets all the requirements of the specification and any written agreements between the City of Austin and the Supplier. The conditions of any tests shall be mutually agreed upon by the City of Austin and Supplier and the Supplier shall be notified of and may be represented at all tests made. If inspection and/or tests show the work or any part thereof not to be warranted and/or contracted for, the City of Austin may refuse to accept it, and the Supplier shall be so advised and shall have a reasonable time within which to correct the work at the Supplier's own expense.
8.5 The City of Austin shall be given 48 hours of advanced notice of intent to deliver. If proper notice of intent to deliver is not received, then the shipment will be rejected. Any additional charges due to the refusal of the shipment will be the responsibility of the Supplier.

If any defect in the apparatus supplied, or failure to comply with said specification, shall appear within the period of one (1) year from the energization of the equipment or a maximum of eighteen (18) months from the date of final acceptance of the work, the Supplier shall be immediately notified, and Supplier's shall thereupon correct without delay and at Supplier's own expense the defect or defects of failure of compliance, by repairing the defective part or parts, by supplying a non-defective replacement or replacements, or by correcting a defective or deficient design. Supplier shall further replace or repair all other similar equipment if such defect may reasonably be expected to develop or occur in said similar equipment. Removal and installation cost of the defective parts or equipment shall be at the Supplier's expense. In the event the Supplier must correct any defect or defects or failure of compliance by repair, replacement or correction as hereinabove provided, then with respect to the apparatus corrected, the aforesaid period shall begin from the date of completion of installation of such correction and acceptance thereof, provided same is not unreasonably delayed by the City of Austin.

ATTACHMENT I NAMEPLATE SCHEDULES

Attachment I page 1 of 9

STEPHEN F. AUSTIN BUILDING
INDOOR METALCLAD SWITCHGEAR CUBICLE 1 NAMEPLATE SCHEDULE

NP\#	First Line	Second Line	Third Line
1	Cubicle 1	Feeder 1	
2	Feeder 1	Amps	
3	Circuit Breaker	Cap. Trip Device	Test
4	Feeder 1	Circuit Breaker	Control
5	Feeder 1	Meter and Transducer	Test Switch
6	Feeder 1	Overcurrent	510 A
7	Feeder 1	Overcurrent	$51 \varnothing$ B
8	Feeder 1	Overcurrent	510 C
9	Feeder 1	Overcurrent	51N
10	Feeder 1	Current Transducer	
11	Feeder 1	Watt/Var Transducer	

Nameplate \#1 is 1" x 4" with 3/8" Letters
All Others Are 3/4" x 2 1/2" with 5/32" Letters
All Nameplates Are Black With White Letters

STEPHEN F. AUSTIN BUILDING

INDOOR METALCLAD SWITCHGEAR CUBICLE 2 NAMEPLATE SCHEDULE

NP\#	First Line	Second Line	Third Line
1	Cubicle 2	Feeder 2	
2	Feeder 2	Amps	
3	Circuit Breaker	Cap. Trip Device	Test
4	Feeder 2	Circuit Breaker	Control
5	Feeder 2	Meter and Transducer	Test Switch
6	Feeder 2	Overcurrent	510 A
7	Feeder 2	Overcurrent	510 B
8	Feeder 2	Overcurrent	510 C
9	Feeder 2	Overcurrent	51N
10	Feeder 2	Current Transducer	
11	Feeder 2	Watt/Var.Transducer	
12	Automatic Transformer	Switch	Normal
13	Automatic Transformer	Switch	Emergency
14	Network Grid	Power	Available
15	Control Power	Transformer	Available

Nameplate \#1 is 1" x 4" with 3/8" Letters
All Others Are 3/4" x 2 1/2" with 5/32" Letters
All Nameplates Are Black With White Letters

Attachment I page 3 of 9

STEPHEN F. AUSTIN BUILDING

INDOOR METALCLAD SWITCHGEAR

 CUBICLE 3 NAMEPLATE SCHEDULE| NP\# | First Line | Second Line | Third Line |
| :--- | :--- | :--- | :--- |
| | | | |
| 1 | Cubicle 3 | | Transformer 1 |

Nameplate \#1 is 1" x 4" with 3/8" Letters
All Others Are 3/4" x 2 1/2" with 5/32" Letters
All Nameplates Are Black With White Letters

Attachment I page 4 of 9

STEPHEN F. AUSTIN BUILDING
INDOOR METALCLAD SWITCHGEAR CUBICLE 4 NAMEPLATE SCHEDULE

NP\#	First Line	Second Line	Third Line
1	Cubicle 4	Transformer 2	
2	Transformer 2	Differential	87T2ø A
3	Transformer 2	Differential	87T2ø B
4	Transformer 2	Differential	87T2ø C
5	Transformer 2	Low Side Circuit	Breaker Amps
6	Transformer 2	Sudden Pressure	Temperature Trip
7	Transformer 2	High Side Switch	S2 Position
8	Transformer 2	Lockout	86T2
9	Transformer 2	Low Side Breaker	Control
10	Transformer 2	Lockout Cap. Trip	Device Test
11	Transformer 2	LS Breaker Cap. Trip	Device Test
12	Transformer 2	Lockout Trip	Test Switch
13	Transformer 2	Low Side Metering	Test Switch
14	Transformer 2	LS Breaker Overcurrent	51T2ø A
15	Transformer 2	LS Breaker Overcurrent	51T2ø B
16	Transformer 2	LS Breaker Overcurrent	51T2ø C
17	Transformer 2	LS Breaker Overcurrent	51T2N
18	Transformer 2	LS Breaker Network	Relay 92T2
19	Transformer 2	Current Transducer	
20	Bus 1	Differential Lockout	86B1
21	Bus 1	Differential	87B1ø A
22	Bus 1	Differential	87B1Ø В
23	Bus 1	Differential	87B1Ø C
24	Bus 1	Differential Cap. Tri	Device Test
25	Bus 1	Differential Lockout	Trip Test Switch A
26	Bus 1	Differential Lockout	Trip Test Switch B

Nameplate \#1 is 1" x 4" with 3/8" Letters All Others Are 3/4" x 2 1/2" with 5/32" Letters All Nameplates Are Black With White Letters

STEPHEN F. AUSTIN BUILDING

INDOOR METALCLAD SWITCHGEAR

 CUBICLE 5 NAMEPLATE SCHEDULE| NP\# | First Line | Second Line | Third Line | |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Cubicle 5 | Bus Tie Breaker | | |
| 2 | Bus 1 | Voltage | | |
| 3 | Bus 2 | Voltage | | |
| 4 | Bus Tie Breaker | Amps | | |
| 5 | Bus Tie Breaker | Cap. Trip Device | Test | |
| 6 | Bus Tie Breaker | Control | | |
| 7 | Bus Tie Breaker | Meter/Transducer | Test Switch | |
| 8 | Bus Tie Breaker | Overcurrent | 510 A | |
| 9 | Bus Tie Breaker | Overcurrent | $51 \varnothing$ B | |
| 10 | Bus Tie Breaker | Overcurrent | | 510 C |
| 11 | Bus Tie Breaker | Overcurrent | 51N | |
| 12 | Bus 1 | Voltage Transducer | | |
| 13 | Bus 2 | Voltage Transducer | | |
| 14 | Bus Tie Breaker | Current Transducer | | |
| 15 | Voltmeter | Transducer Test Swi | | |

Nameplate \#1 is 1" x 4" with 3/8" Letters
All Others Are 3/4" x 2 1/2" with 5/32" Letters
All Nameplates Are Black With White Letters

Attachment I page 6 of 9

STEPHEN F. AUSTIN BUILDING
INDOOR METALCLAD SWITCHGEAR CUBICLE 6 NAMEPLATE SCHEDULE

First Line	
Cubicle 6	
Transformer	3
Bus 2	

Second Line

Transformer 3
Differential
Differential
Differential
Low Side Circuit
Sudden Pressure
High Side Switch Lockout
Low Side Breaker
Lockout Cap. Trip
LS Breaker Cap. Trip
Lockout Trip
Low Side Metering
LS Breaker Overcurrent
LS Breaker Overcurrent
LS Breaker Overcurrent
LS Breaker Overcurrent
LS Breaker Network Current Transducer Differential Lockout

Differential
Differential
Differential
Differential Cap. Tri
Differential Lockout
Differential Lockout

Third Line

87T3ø A
87T3Ø B
87T3ø C
Breaker Amps
Temperature Trip
S3 Position
86T3
Control
Device Test
Device Test
Test Switch
Test Switch
51T3Ø A
$5113 \varnothing$ В
51T3ø C
51T3N
Relay 92T3
86B2
87B2ø A
87B2ø B
87B2ø C
Device Test
Trip Test Switch A
Trip Test Switch B

Attachment I page 7 of 9

STEPHEN F. AUSTIN BUILDING

INDOOR METALCLAD SWITCHGEAR

 CUBICLE 7 NAMEPLATE SCHEDULE

Nameplate \#1 is 1" x 4" with 3/8" Letters
All Others Are 3/4" x 2 1/2" with 5/32" Letters
All Nameplates Are Black With White Letters

Attachment I page 8 of 9
STEPHEN F. AUSTIN BUILDING
INDOOR METALCLAD SWITCHGEAR CUBICLE 8 NAMEPLATE SCHEDULE

NP\#	First Line	Second Line	Third Line
1	Cubicle 8	Feeder 3	
2	Feeder 3	Amps	
3	Circuit Breaker	Cap. Trip Device	Test
4	Feeder 3	Circuit Breaker	Control
5	Feeder 3	Meter and Transducer	Test Switch
6	Feeder 3	Overcurrent	51ø A
7	Feeder 3	Overcurrent	510 B
8	Feeder 3	Overcurrent	510 C
9	Feeder 3	Overcurrent	51N
10	Feeder 3	Current Transducer	
11	Feeder 3	Watt/Var Transducer	

Attachment I page 9 of 9

STEPHEN F. AUSTIN BUILDING

INDOOR METALCLAD SWITCHGEAR

 CUBICLE 9 NAMEPLATE SCHEDULE| NP\# | First Line | Second Line | Third Line |
| :---: | :---: | :---: | :---: |
| 1 | Cubicle 9 | Feeder 4 | |
| 2 | Feeder 4 | Amps | |
| 3 | Circuit Breaker | Cap. Trip Device | Test |
| 4 | Feeder 4 | Circuit Breaker | Control |
| 5 | Feeder 4 | Meter and Transducer | Test Switch |
| 6 | Feeder 4 | Overcurrent | 510 A |
| 7 | Feeder 4 | Overcurrent | $51 \varnothing$ B |
| 8 | Feeder 4 | Overcurrent | 51Ø C |
| 9 | Feeder 4 | Overcurrent | 51N |
| 10 | Feeder 4 | Current Transducer | |
| 11 | Feeder 4 | Watt/Var Transducer | |

Nameplate \#1 is 1" x 4" with 3/8" Letters
All Others Are 3/4" x 2 1/2" with 5/32" Letters
All Nameplates Are Black With White Letters

